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At Manitoba, we use ultrasound to study mesoscopic wave  phenomena in complex 
media, and  to probe the physical properties of mesoscopic materials.

- ballistic and diffusive wave transport in random media
- field fluctuation spectroscopy (DSS, DAWS…)

wave transport & focusing in phononic crystals- wave transport & focusing in phononic crystals
- ultrasound in complex materials (e.g., soft matter, foods)
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Mesoscopic wave physics with ultrasound

Wave transport in random media Field fluctuation spectroscopy (e.g., DAWS)
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Phononic crystals Spectroscopy of complex materials, e.g. foods
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Outline:   Anderson Localization of Ultrasonic Waves
See Physics Today, August 2009

• Introduction to Anderson localization
y y, g

• Localization of  elastic waves in 3D
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I.    Why elastic waves?
Our samples & their basic 

(wave) properties

II.  Time-dependent 
transmission, I(t) 0 100 200 300 400
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III.  Transverse confinement of ultrasonic waves
due to localization 
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IV.  Statistics and Correlations – non-Rayleigh statistics, 
variance multifractality long-range correlations

t (s)

IV.  Coherent Backscattering 

variance, multifractality, long-range correlations.  

Hu et al., Nature Physics, 4, 945 
(Dec, 2008)    arXiv:0805.1502• Conclusions



Introduction:  Anderson localization of electrons (quantum particles)
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[# citations > 4200 !]



Introduction:  Anderson localization of electrons (quantum particles)
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in space

P.W. Anderson
1958

E = Ec 

extended state

(~50 years ago) E < Ec 

"Localization [..], very few believed it at the time, and even fewer saw its 
importance, among those who failed to fully understand it at first was certainly its 
author. It has yet to receive adequate mathematical treatment, and one has to 
resort to the indignity of numerical simulations to settle even the simplest questions resort to the indignity of numerical simulations to settle even the simplest questions 
about it."
P.W. Anderson, Nobel Lecture, 1977

Experiments:Many theoretical breakthroughs: Experiments:
Hampered by interactions and 
finite temperatures

Many theoretical breakthroughs:
e.g.  Scaling theory (1979)   (~30 years ago)

Self consistent theory (1980)



Introduction:  Anderson localization of electrons (quantum particles)
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Localization of classical waves (sound or light) 
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Introduction - basic concepts:
With sufficient disorder, wave interference can suppress the diffusion 
coefficient and hence the conductivity. 
Localized state:  confined within a length scale 
Extended (diffusive) state:  extends over the entire sample, Ld

Thouless criterion - distinguishing localized and extended 
states by their sensitivity to boundary conditions

2  important  frequencies (and time scales)
•   the frequency shift of a mode when boundary conditions are 
changed from symmetric to antisymmetricchanged from symmetric to antisymmetric.   

frequency width is due to time scale T (“Thouless time”) required for change 
in boundary conditions to be communicated to the wave function (  1/T ).  

•   the average frequency separation between neighbouring statesg q y p g g
Inversely proportional to the density of states [ = 1/( Ld )]
H  1/ is called the “Heisenberg time”

Dimensionless Thouless conductance:
g > 1  diffusive/extended states
g < 1  localized states

Dimensionless Thouless conductance:

g 







Scaling of the Thouless conductance with system size L: 
What happens if small samples are coupled together to make larger ones?

Extended/diffuse states (   ; states overlap in frequency):  

1 1 D   1 dL   


2
T D L


 

  d L
L




  

2d


g increases with L in 3D

Characteristic diffusion time

2dg L
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g increases with L in 3D,
g decreases with L in 1D 

Localized states ( <  ; states well separated in frequency): 
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Scaling of the Thouless conductance with system size L: 
What happens if small samples are coupled together to make larger ones?

Extended/diffuse states:  

2dg L   g increases with L in 3D,g


Localized states:

g decreases with L in 1D 

 exp    (for )g L L  


   


g always decreases with L

Consequences: 
• In 3D: g increases with L for diffuse states (large g), but decreases with L
for localized states (small g)for localized states (small g).  
 transition from diffuse transport to localization at g = gc  1.
• In 1D:   g always decreases as L increases.  
 No transition all states are localized No transition, all states are localized.  
• 2D is the “marginal” dimension for localization.  Higher order terms indicate 
that all states are localized in 2D as well (no transition).



Scaling Theory of Localization [Abrahams et al., P.R.L., 42, 637 (1979)]        

The scaling of g with L is given by

1

β = d(lng)/d(lnL)
e sca g o g t s g e by

 
 

2 ln    extended states
ln ( )

exp ln    localized states
d L

g L
L

 
 

and captured by the scaling function

lnd g
-1

 p

 > 0 extended states

Scaling hypothesis:  is a function of g only

  ln
ln

d gg
d L

 
Arrows indicate the 
direction in which ln g

 > 0  extended states
 < 0  localized states
 = 0 at gc

Scaling hypothesis:   is a function of g only
 Effect of changing the disorder can be 
compensated by changing L (g depends on both disorder and L).

varies as L increases

Predictions:
• Only in 3D is there a real transition (i.e., a critical point at g = gc) from 
extended to localized modesextended to localized modes
• At gc, g  DLd-2  1 is scale independent ( = 0)   D  1/L is renormalized
• All states in 1D and 2D are localized (if the sample is big enough).  



Self-Consistent (SC) Theory [Vollhardt & Wölfle, P.R.L., 45, 842 (1980)]        

Wave paths with multiple scattering loops lead to constructive interference, 
which enhances the probability for the wave to return to the same spot.
Consider two wave paths a and b The wave energy isConsider two wave paths a and b. The wave energy is  

2 2 2 *2Rea b a b a b        

Interference term
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Self-Consistent (SC) Theory [Vollhardt & Wölfle, P.R.L., 45, 842 (1980)]        

Wave paths with multiple scattering loops lead to constructive interference, 
which enhances the probability for the wave to return to the same spot.
Consider two wave paths a and b The wave energy isConsider two wave paths a and b. The wave energy is  

2 2 2 *2Rea b a b a b         for different paths, cancels on 
average (diffusion approximation)

 Diffusion slows down and conductivity (transmission) is reduced, 

Interference term for loops, doubles the energy 
locally (time reversed paths)

y ( ) ,
becoming scale dependent.  
SC theory provides physical insight into how localization occurs.  



Question:  when does the amount of energy returning to the source 
position become significant? 

A simple (approximate) argument can be constructed that this occurs when 
k  1, where k is the wave vector and  is the mean free path.  

Ioffe Regel criterion for localization:   k  1



Why has it been difficult to observe Anderson localization of 
electrons experimentally? 

For “quantum” particles (electrons), 
observations are hindered by: 

• Need for low temperatures:
Lcoh  1/T 

(Anderson’s “absence of diffusion” only 
holds for T = 0)

• Need for small samples:
size < L  1 msize < Lcoh  1 m.

• Mutual interactions between 
electrons

• Electron-phonon interactions



Experiments with classical waves have some advantages.  

For “quantum” particles (electrons), 
observations are hindered by: 

• Need for low temperatures:

For light (photons) or sound 
(phonons),   

• Experiments can be done at room• Need for low temperatures:
Lcoh  1/T 

(Anderson’s “absence of diffusion” only 
holds for T = 0)

• Experiments can be done at room 
temperature. 
Lcoh  is independent of T

)

• Need for small samples:
size < Lcoh  1 m.

• Samples can be of “human” size:
Lcoh is very large.

• No photon photon or phonon
• Mutual interactions between 
electrons

• No photon-photon or phonon-
phonon interactions in a linear 
medium.  

• Electron-phonon interactions • Photon-phonon interactions are 
negligible

(b t it is important to a oid(but it is important to avoid 
complications due to absorption)



Previous acoustic experiments in 1D:
A disordered chain of masses and springs - measure the transverse

Diagonal disorder: vary the positions of the masses

A disordered chain of masses and springs   - measure the transverse 
displacements for different amounts of disorder
[He and Maynard, PRL, 57, 3171]:

Diagonal disorder: vary the positions of the masses.

Off-diagonal disorder:  vary the sizes of the masses.

Ordered chain

2% site disorder

Localization is easy to observe in 1D!  



Previous ultrasonic experiments in 2D:
Ultrasound in a disordered plate with random slots [Weaver Wave Motion 12Ultrasound in a disordered plate with random slots  [Weaver, Wave Motion, 12, 
129-142(1990) ; Lobkis and Weaver, J. Acoust. Soc. Am. 124, 3528 (2008)]:

Measure (with 4 small transducers):
Diff (f 660 kH )
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Previous ultrasonic experiments in 2D:
Ultrasound in a disordered plate with random slots [Weaver Wave Motion 12Ultrasound in a disordered plate with random slots  [Weaver, Wave Motion, 12, 
129-142(1990) ; Lobkis and Weaver, J. Acoust. Soc. Am. 124, 3528 (2008)]:

Measure (with 4 small transducers):

   
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b a b a

ab

E E E E ER r t f
EE E
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1/4

1 2 2 1 distant
1/2
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, ,   

2
1
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Anderson localization near 200 kHz

ba

Localization length ~ 12 cm  



Previous experiments with light in 3D:
Exponential scaling of the average transmission (for monochromatic waves)Exponential scaling of the average transmission (for monochromatic waves)
with thickness L.  [Wiersma et al., Nature 390, 671 (1997)] 

Diffuse regime: Localized regime


 *T
L 

 
  

 
exp LT

• Difficult to distinguish from effects of absorption ( exp[-L/ℓa])



Previous experiments with microwaves in quasi-1D:
Enhanced fluctuations of total transmissionEnhanced fluctuations of total transmission.  
[Chabanov et al., Nature 404, 850 (2000)] 

2 2

Diffuse regime: Localized regime



2

2 1
T

T


 

2

2 const 1
T

T

• Chabanov et al. proposed that this criterion for localization is independent of 
absorption, but their experiments were limited to quasi-1-dimensional samples.



More recent experiments with light in 3D:
Time-dependent transmission through thick samples of TiO particlesTime-dependent transmission through thick samples of TiO2 particles 
[Störzer et al., PRL 96, 063904 (2006)] 

Non-exponential tail at long 
times: 
interpreted as a slowing down p g
of diffusion with propagation 
time due to localization.

Current status (~50 years after Anderson’s discovery):  
• The subject is more alive than ever! j

• Activity in optics, microwaves, acoustics, seismic waves, and atomic 
matter waves.



Question: Can we convincing observe the localization of ultrasound 
due to disorder in 3D, and, if so, can we learn something new?  
N.B.:  Scaling theory  Only in 3D is there a real transition from extended to 
localized modes (i.e., a mobility edge) ; unambiguous evidence has been elusive.

Weak disorder (kℓ >> 1): 
Diffuse propagation 
DB = ⅓ vE ℓB* (neglect

Strong disorder (kℓ  1): 
Anderson localization 
(interference is important!)DB  ⅓ vE ℓB   (neglect 

interference) 
(interference is important!) 

Energy density spreads Energy remains

e.g., After a short pulse of ultrasound is incident on the medium…
Localization length 

gy y p
diffusively 

from the source 

Energy remains 
localized 

in the vicinity of the source



Our samples:  “Mesoglasses” fabricated by 
brazing aluminum beads together to form a 

lid 3D l ti t ksolid porous 3D elastic network.  
 good control of elastic coupling between beads 
 low intrinsic absorption.

Aluminum volume fraction:     = 0.55
Monodisperse beads:   

radius a = 2 05 mmradius,  abead = 2.05 mm
Sample width >> thickness (L: 8 to 23 mm)

Pulsed ultrasonic transmission measurements 
(waterproofed samples, in a water tank)

Frequency range:  0.1 to 3 MHz  (                ) 6 1a

planar
transducer:
(far field)

hydrophone

(xi,yi)

incident sound
waves: quasi-
planar sample



Coherent transport in disordered Al mesostructures:

Ballistic transport: Average the transmitted field toBallistic transport: Average the transmitted field to 
recover the weak coherent pulse and measure :

• phase velocity: p kv

• group velocity:
• scattering mean free path, ℓ :

Very strong 
scattering in the 

intermediate 
 exp  0 /LI I

 d dg kv

Amplitude transmission coefficient: 
Bandgaps arise from weakly coupled resonances 
of the aluminum beads (Turner & Weaver, 1998)

frequency regime 
(0.2 – 3 MHz) :

1  kℓ  2 5of the aluminum beads (Turner & Weaver, 1998) 1   kℓ  2.5
(outside the 
bandgaps) 
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II. Time-dependent transmission, I(t).
• Measure multiply scattered field in many 

planar
transducer

incident sound
(quasi planar)

hydrophone

p y y
independent speckles by scanning the 
hydrophone.

• Digitally filter the field to limit bandwidth

(quasi-planar)
sample

0.2 SPECKLE 1• Digitally filter the field to limit bandwidth 
(~5% usually) 

• Determine I(t) by averaging the squared 
t itt d l l (N li

0.0

0.1

0.2 SPECKLE 1
 SPECKLE 12
 SPECKLE 25

W
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e 
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(a
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.)

transmitted pulse envelopes. (Normalize 
by the peak of the input pulse)

• First compare with the diffusion model, 
0 100 200 300 400

-0.2

-0.1W

Time (s)

using realistic boundary conditions 
(e.g. see Page et al., Phys. Rev. E   52, 3106 
(1995) for ultrasonic waves)
[z - extrapolation length; z - penetration 1E-3

0.01

ns
ity

[z0 - extrapolation length;   z - penetration 
depth;  a - absorption time]

• For elastic media, the diffusion 
coefficient D = ⅓ v ℓ* is the energy 1E-6
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coefficient DB = ⅓ vE ℓ   is the energy-
density weighted average of longitudinal 
and transverse waves.   
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Time-dependent transmission at low frequencies:
(below the lowest band gap)

Good fit to the predictions of the diffusion approximation for a plane 
wave source   measure D. (Absorption is too small to measure.)

f = 0.2 MHz:

I(t) decays 0.01
Experimenty exponentially at 

long times
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02D BL z D

1E-6
l* = 2.5 mm
R = 0.85
L = 14.5 mm
a ~ infinite (no absorption)
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Normal diffusive 
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I(t) at higher frequencies (e.g. 2.4 MHz)

Find non-exponential decay of I(t) at long times (t >> D )  Looks

 

Find non exponential decay of I(t) at long times (t  D )  Looks 
like a diffusion process with D(t) decreasing with propagation time.
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Suggests that sound may be localized



Quantitative analysis of I(t) at high frequencies (2.4 MHz)
– fit the (plane wave) data directly with the recently improved self-

i t t th f l li ticonsistent theory of localization [Skipetrov & van Tiggelen (2006)] 

Basic idea:
The presence of  loops increases the return 
probability as compared to ‘normal’ diffusion

Diffusion slows down

Diffusion constant should be renormalized

Generalization to Open Media:

Loops are less probable near the boundaries

Slowing down of diffusion is spatially heterogeneous

Diffusion constant becomes position-dependent



Quantitative analysis of I(t) at high frequencies (2.4 MHz)
– fit the (plane wave) data directly with the recently improved self-

i t t th f l li ti

Mathematical formulation:

consistent theory of localization [Skipetrov & van Tiggelen (2006)] 

Diffusion equation

                i D r G r r r r

Self consistent equation for the diffusion coefficient

( G(r,r,) – Intensity Green’s function)

            , , ,i D r G r r r r

Self-consistent equation for the diffusion coefficient

 
   


1 1 3 ( , , )

( , ) ( )B B
G r r r

D r D D

Diffusion coefficientBoundary conditions

( () – density of states )

Diffusion coefficient 
depends on position r

and frequency 
      0

( , )( , , ) ( , , ) 0
B

D rG r r z G r r
D

n



Quantitative analysis of I(t) at high frequencies (2.4 MHz)
– fit the (plane wave) data directly with predictions of the self 

i t t th f l li ti f D( )consistent theory of localization for D(r,) [Skipetrov & van Tiggelen (2006)] 

Input parameters:
  Experiment
  Self-consistent Theory

Diff i Th

 

L = 14.5 mm (sample thickness)
ℓ = 0.6 mm (scattering mean free     

path)
R = 0.82 (internal reflection coeff.)

1E-6

1E-5
  Diffusion Theory

si
ty

ℓB* = 2.0 mm
L/ = 1.0 
 = 11 s z0 = ℓB* ⅔ (1+R)/(1-R) = 6.7 ℓB* 

vp = 5.0 km/s (phase velocity)
kℓ = 1.82

Fitted parameters:
1E-7

1E-6
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ns D = 11 s 
a = 160 s 

Fitted parameters:
ℓB* (“bare” transport mean free path)
L/ ( is the localization length)
D or DB (bare diffusion coefficient)
 (absorption time)

1E-8

N
or

m
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a (absorption time)

0 100 200 300 400
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Excellent fit at all propagation times.



Quantitative analysis of I(t) at high frequencies (2.4 MHz)
– fit the (plane wave) data directly with predictions of the self 

i t t th f l li ti f D( )

  Experiment
  Self-consistent Theory

Diff i Th

 Localization length :

consistent theory of localization for D(r,) [Skipetrov & van Tiggelen (2006)] 
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  Diffusion Theory
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 > 0 ,     kℓ < (kℓ)c

Diffuse regime:
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g
 < 0 ,     kℓ > (kℓ)c

Excellent fit at all propagation times with  > 0 (L >  > L/4) 
 Strong (but indirect) evidence for the localization of sound 



Self consistent theory of localization predicts a strong and rapid 
renormalization of D in our samples: 



  

   




1 1 ( , , )
( , )

where   3 ( ) ,
B

B

G r r r
D r D

D

 DB cannot be 

 
  

( )
( ) D.O.S.

B

 =100D
-1

measured directly, 
even for t < D.
(D(,z)/DB <<1 for all 

 =D
-1

accessible t).

 Best fits have: 
surprising large DBp g g B
(and hence large vE )

Question: Can this be 
explained by a

 =0.1D
-1

explained by a 
reduced density of 
states (D.O.S.)?



Density of states – direct measurements!

• Unusual behaviour

 

7 bead sample• Unusual behaviour
below the first 
bandgap (~ constant).

F f 0 6 MH

1000

7 bead sample
 11 bead sample
 weakly sintered samples
 strongly sintered samples

Debye
 Weyl
 constant

• For  f > 0.6 MHz, 
average DOS is 
consistent with 
standard predictions: 100
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standard predictions:
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Conclude:  Large values found for vE cannot be explained by anomalously 
low DOS (due to short range correlations or bandgap effects)



III. Transverse confinement (“transverse localization in 3D”)

Experiment (displaced point source technique):Experiment (displaced point source technique):

• Point source (focusing 
transducer + small aperture) 

focusing 
transducer

hydrophone

sample 
cross-section

• Point detector, placed a 
transverse distance  away

• Scan x y position of the

hydrophone
(on-axis 
configuration)


• Scan x-y position of the 
sample to determine I(,t). (off-axis 

configuration)cone-shaped aperture

The ratio I( t)/I(0 t) probes the transverse growth (dynamic spreading)The ratio I(,t)/I(0,t) probes the transverse growth (dynamic spreading) 
of the intensity profile.  
• Diffuse regime – measure the effective width of the “diffuse halo”, which 

f fprovides a method of measuring D independent of boundary conditions and 
absorption. [Page et al., Phys. Rev. E 52, 3106 (1995)]

           
2 2 2( , ) exp 4 exp ( )t Dt w tI so the effective width w(t) is       exp 4 exp ( )

(0, )
Dt w t

tI
so the effective width w(t) is 

 



  

2
2( ) 4

ln ( , ) (0, )
w t Dt

t tI I



Diffuse regime –the effective width of the “diffuse halo” grows linearly in time

Data (from 1995) on a suspension of glass beads in water (kℓ 7)Data (from 1995) on a suspension of glass beads in water (kℓ 7)
[Page et al., Phys. Rev. E   52, 3106 (1995)] 
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Question: What happens to I(,t) & w(t) in the localization regime?   
1E-6   = 0 mm
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200Diffuse regime prediction, 

Dynamic transverse width at 
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Localization dramatically 
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Quantitative analysis of the dynamic transverse width, w(t):
- Fit the data using the new self consistent theory that allows for the 

iti d d f th li d diff i ffi i t i 3Dposition dependence of the renormalized diffusion coefficient in 3D.  
• Excellent fit for all four  with:

ℓB* = 2.0 mmB
L/ = 1.0 
D = 17 s 

(a cancels in ratio) 
150

200

• Fit is more sensitive to  than 
plane wave I(t)

• Again find  > 0  classical
100

150

)  
(m

m
2 )

• Again, find  > 0  classical 
wave localization is 
convincingly demonstrated in 
this 3D “phononic” mesoglass

50
Exp't                   Theory

  = 30 mm  
  = 25 mm  
 = 20 mm

 

w
2 (t)

this 3D phononic  mesoglass.

• First direct measurement and 
theory for the transverse 
t t f l li d i

0 50 100 150 200
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 = 20 mm  
  = 15 mm  

t (s) structure of localized waves in 
3D.   Find w  12-14 mm  
for this sample

t (s)



3D Transverse Localization: this animation (prepared by Sergey 
Skipetrov) shows the “freezing” of the transverse profile at long times 
( t ti f I( t)/I( 0) f t > t 100 i thi )(saturation of I(,t)/I(,0) occurs for t > tloc  100 s in this case.)

 Theory
 Experiment Experiment



Decrease of I(,t) with transverse distance  is not Gaussian 
 Near the mobility edge (kℓ /(kℓ )c = 0.99  for this sample at this 
f ) i h t ith t di l tfrequency), w varies somewhat with transverse displacement .
The self-consistent theory (solid curves) captures the experimentally observed 
dependence of w(t) on  very well. p ( )  y
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Question:  What determines the magnitude of the dynamic transverse 
width w(t) in transmission?

• For thick samples, w becomes independent of  .

• Behaviour at long times:  SC theory predictions for the saturated width 
when L >>  : 2when L >>  :

[Cherroret, Skipetrov and van Tiggelen, aiXiv:0810.0767v1]
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For localized waves, 
w depends on both L and 



The saturation of w(t) at long times is predicted even at the mobility 
edge   [Cherroret, Skipetrov and van Tiggelen, arXiv:0810.0767v1].

Numerical calculations using the dynamic self-consistent theory:

At the mobility edge: 
(t ) L

In the diffuse regime: 
w2(t) = 4D [1 (kl )-2 ]t w(t)  Lw2(t) = 4D [1-(kl ) 2 ]t

( L = 100 l ) 

D i thDeep in the 
localization regime:

2( )w t

   

( )
2 1 /L L



Similar trends are seen in the experiments (for t /D  < 20)
• Compare three representative samples with different amounts of disorder 

1 0

p p p
(same measuring frequency f = 2.4 MHz). 

L = 14.5 mm,  = 15 mm;  L = 23.05 mm,  = 12 mm;  L = 23.5 mm,  = 6.5 mm; 
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What happens when we vary the frequency?  
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t 1/2
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 2
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At 0.7 and 1.0 MHz, w 2(t) does not saturate  above the mobility edge. 
(at 0.7 MHz, the time dependence is almost linear)

Should be feasible to measure  as the mobility edge is approached



What happens when we vary the frequency?
Plot on log scales to show the time dependence  g p
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Near the mobility edge we see
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Agrees ith estimatesNear the mobility edge, we see
w 2(t)   t 2/3 for t < D &
w 2(t)   t 1/2 for a limited range of t > D

Agrees with estimates 
of w2(t) using the self-
consistent theory.  



Summary:  Transverse confinement   (3D transverse localization)
• The dynamic transverse width w 2(t) has completely different properties for 

ffdiffuse and localized modes

Diffuse: w 2(t)  t and increases without bound.

Localized: w 2(t) saturates at long timesLocalized: w 2(t) saturates at long times.  
At the mobility edge:         w(t)  L 
Deep in the localization regime:       2( ) 2 1 /w t L L

• w 2(t) is independent of absorption  its measurement (for any kind of wave) 
provides a valuable method for assessing whether or not the waves are 
localized.  (No risk of confusing absorption with localization.)  

• w 2(t) can be used to measure 
the localization length .

• Measurements of transverse 
confinement provide the most
direct evidence for localization
in 3D to date.



IV  Backscattering experiments – initial results:
[with Laura Cobus, Alexandre Aubry and Arnaud Derode – see Laura’s poster for more] 

128 l

Average time-dependent backscattered intensity:

128-element 
transducer array

f = 3.2 MHz

Coherent backscattering cone: due to

 = 0.5 mm

Coherent backscattering cone:  - due to 
constructive interference in the backscattering 
direction of waves travelling along reciprocal 
paths Simulate far field conditions using planepaths.  Simulate far field conditions using plane 
wave beamforming.  

Transverse Confinement of the incoherent 
i t it G i b f i itintensity:  Gaussian beamforming permits 
measurements of transverse confinement in 
reflection.  Reciprocal paths



Transverse confinement in reflection:
• Use Gaussian beamforming [Aubry & Derode, 
PRE 2007] t f th itt d d i dPRE 2007] to focus the emitted and received 
waves at the sample surface – measure I(, t) 
in reflection 

 

•Incoherent background fitted by a Gaussian 
to measure the transverse width, w.  
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(c.f., dashed green line – the 
measured value from 
transmission measurements 
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Coherent backscattering cone:
• Simulate far-field conditions using 
l b f i
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plane wave beamforming
[Aubry & Derode, JASA (2007)]. 
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background at early times – preliminary 
analysis by fitting two Gaussians. 
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•For t > 50 s, behaviour is 
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consistent with the observed 
transverse confinement of the 
incoherent intensity.



The inter-element response matrix Kij exhibits strong coherences 
along the anti-diagonals:

Matrix K (t = 35 s, f = 2.7 MHz)Matrix K (t  35 s, f  2.7 MHz)

• Coherence along the antidiagonals of K has been demonstrated for 
single scattering [Aubry and Derode, J. App. Phys. (2009), P.R.L. (2009)]
• Here, the coherence along the antidiagonals of K cannot be due to 
single scattering, since vt/2 > L >> s .

It b l i d b th f t th (th fi t d• It may be explained by the occurrence of recurrent paths (the first and 
last scattering events along a multiple scattering path are identical) 
which exhibit the same statistical properties as single scattering 



Separation of recurrent paths from the total backscattered signal 
Alexandre’s idea:



Separation of recurrent paths from the total backscattered signal 
Spatial intensity profiles:

• Single + recurrent (IS, 
blue) contribution is broadblue) contribution  is broad, 
and decreases with time. 
• Classical multiple 
scattering (IM, red) shows a 
CB peak on top of a flat 
plateau, with an 
enhancement factor of 2. 

By identifying and separating the single and recurrent contributions, it 
should be possible to measure the time-dependent width of the 
backscattering cone  more robustly.  



V.  Statistical approach to the localization of elastic waves:

Diffuse ultrasound

0

 

3.000

3.600

4.200

4.800

5.400

6.000
use u t asou d

(speckle pattern for our 
mesoglass at 0.20 MHz)

10
20

30

40

50

0
10

20
30

40
50

x (
mm)y (mm)0

0.6000

1.200

1.800

2.400

Localized ultrasound 
(speckle pattern for our 
mesoglass at 2 4 MH )50

Large fluctuations in the transmitted intensity

mesoglass at 2.4 MHz)

20.00

22.50

25.00

Large fluctuations in the transmitted intensity 
are characteristic of localized waves.

Signatures of these fluctuations 
are seen in:

25

30

20

25

yy
y

5.000

7.500

10.00

12.50

15.00

17.50are seen in: 
• Near field speckle pattern
• Intensity distribution P(I /I)

15

20

25

10

15

20

y (mm) x (
mm)

0

2.500

• Variance
• Multifractality



Transmitted intensity distributions for our mesoglass:
Measure the intensity I at each point in the near field speckle pattern when the 

(a) Data at 0.20 MHz

y p p p
sample is illuminated on the opposite side with a broad beam.  When I is normalized 
by its average value to get  Î = I / I , its distribution is universal. 

100(a)  Data at 0.20 MHz

Rayleigh distribution: 
(random wave fields described 
b i l G i t ti ti ) 2

10-1

100
  Experiment,  f = 0.20 MHz
  NvR theory, g' = 11.4
  Rayleigh distribution

by circular Gaussian statistics)

    ˆ ˆexpP I I
10-3

10-2

P
( I )

Leading order correction to 
Rayleigh statistics due to 
interference (no absorption) 
[Nieuwenhuizen & van Rossum

10-5

10-4

[Nieuwenhuizen & van Rossum, 
PRL 74, 2674 (1995)]
(g = dimensionless conductance):
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Î

      
      

21ˆ ˆ ˆ ˆexp 1 4 2
3

P
g

I I I I Find g = 11.4 >> 1
 modes are extended



(b) Near 2 4 MHz (upper part of intermediate frequency regime) find very

Transmitted intensity distributions for our mesoglass:
(b) Near 2.4 MHz (upper part of intermediate frequency regime), find very 
large departures from Rayleigh Statistics

Fit the entire distribution to predictions by van Rossum and Nieuewenhuizen 
[R M d Ph 71 313][Rev. Mod. Phys. 71, 313]
for a slab geometry in 3D 
(red curve).  
Remarkable agreement 10-1

100
  Experiment,  f = 2.4 MHz
  NvR theory, g' = 0.80
stretched exponential g' = 0 80Remarkable agreement 

with experiment.

The tail of intensity 
di t ib ti b

10-2

10   stretched exponential, g   0.80
  Rayleigh distribution

distribution obeys a 
stretched exponential 
distribution 

   ˆ ˆ
10-4
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(g is the effective 
dimensionless conductance.)

   ˆ ˆ~ exp 2P gI I

10-6

10-5

Find g = 0.80 < 1,  
indicating  localization.
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Variance of the transmitted intensity – a simpler way to measure the 
dimensionless conductance g:

Chabanov et al. [Nature 404, 850 (2000)] have proposed that localization is 
achieved when the variance of the normalized total transmitted intensity ,

satisfies
 2

2 2T
T̂ T T=

whether absorption is present or not. This corresponds to the localization 


  

2
2 2ˆvar( )

3 3

T
T

gT

condition g  1.

But var( ) and var(Î) are related:  ˆˆvar( ) 2var( ) 1TIT̂

Then, the Chabanov-Genack localization criterion gives ˆvar( ) 7 3I

e g for our data at 2 4 MHz:e.g., for our data at 2.4 MHz:

Measure var(Î) = 2.74  0.09 

E ll t t ith 0 80 0 08 d f P(Î)

   
  

4 0.77 0.4
ˆ3 var( ) 1

g
I

Excellent agreement with g = 0.80  0.08 measured from P(Î)

Additional evidence that the modes are localized above  2 MHz.



Time dependence of the speckle intensity variance:
Point source Broad (quasi-plane-wave) source
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Large peak in variance at early times due to arrival time fluctuations• Large peak in variance at early times – due to arrival time fluctuations.
• Variance increases slowly with time at longer times (slower  growth than in quasi 
1D – microwave observations by Azi Genack’s group).  

B th i d it th ith ti l f i t• Both variance and its growth with time are larger for a point source.
• Time-dependent variance is less than the stationary variance for the range of 
times measured.



Time dependence of the speckle intensity variance:
Data are consistent with theoretical estimates by Sergey Skipetrov, based 

(quasi-mode frequencies n , 
lifetimes n – for P(), see 
Skipetrov & van Tiggelen PRL (2006)

ata a e co s ste t t t eo et ca est ates by Se gey S pet o , based
on a mode picture of wave propagation:  

  n ni t t
n nt A e      

1
2, ( )r r Skipetrov & van Tiggelen, PRL (2006)  n n

Assuming uncorrelated modes, an estimate of the variance gives

     t t f t t LI      
2 21( ) var ( ) 1 1 2

E i t l d t
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N

I         ( ) var ( ) 1 1 , 2

te 2

Bt D  2where and

Experimental data
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Predictions (valid at long times, t >>D) 
for typical experimental parameters 
reproduce the main features in the data



Multifractality (MF) of the wavefunction (with Sanli Faez, Ad Lagendijk):
[Faez et al., PRL 103, 155703 (2009) ]

Key idea Unusual spatial structure of the wave functions near the AndersonKey idea - Unusual spatial structure of the wave functions near the Anderson 
transition:  Large fluctuations   the moments of the wave function intensity 

I(r) =  2(r)/   2(r)ddr

may depend anomalously on length scale , exhibiting multifractal behaviour
(MF  each moment scales with a different power- law exponent).  

• Many theoretical predictions, but almost no experimental evidenceMany theoretical predictions, but almost no experimental evidence
Question:  Do the ultrasonic wavefunctions exhibit MF in our samples? 

Transmitted speckle patterns I(r) for a fixed point source (at x = y = 0).
E it i l f ti t h f

2.425 MHz2.375 MHz

Excite a single wave function at each frequency.
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15

Multifractality (MF):
Characterizing the length scale dependence:  15

L

0

5
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m
m

)

C a acte g t e e gt sca e depe de ce
 Vary system size L, or 
 Divide system into boxes of size b, 

and vary b with L fixed.  0

5

10

m
m

)

b

-15

-10

-5

y 
(m( < b < L,  L/b is the scaling length)

Generalized Inverse Participation Ratios (gIPR): -15

-10

-5

y 
(m

-15 -10 -5 0 5 10 15

15

x (mm)

Generalized Inverse Participation Ratios (gIPR): 
The gIPR quantify the non-trivial  length scale 
dependence of the moments of the intensity. 

-15 -10 -5 0 5 10 15

15

x (mm)

 
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   
 

 
  
  

  
1 1

i

i

q
n nq d

q B
i i B

P I I dr r I(r) =  2(r)/   2(r)ddr (normalized intensity)
IBi is the integrated probability inside a box Bi

of linear size b
n = (L/b)d is the number of boxes.

  ( )qP L b   ( ) 1q d q    with

At criticality

 qP L b

MF behaviour:  is a continuous 
function of q (critical states). 

 ( ) 1 qq d q    with

normal dimension anomalous dimension



Multifractality (MF):
Generalized Inverse Participation Ratios (gIPR): 15

L = Lg

Ge e a ed e se a t c pat o at os (g )
Find the “typically averaged” gIPR by box-sampling the 
wavefunctions (many frequencies) near the surface 
(d sampling = 2, but sample is 3D) for a single realization 0
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m
m
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p g
of disorder.
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Extended states:
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Extended states:
(q) = d(q-1)  [i.e., q = 0]

Near criticality:

-2
0
2

q
 q = 2
 q = 3lo

g (q), q, both continuous 
functions of q (MF)

Deep in the localization
-1.4 -1.2 -1.0 -0.8 -0.6 -0.4

 log (b/Lg)

Deep in the localization 
regime: (q) = 0



Multifractality (MF):
Generalized Inverse Participation Ratios (gIPR): 15

L = Lg

Ge e a ed e se a t c pat o at os (g )
Find the “typically averaged” gIPR by box-sampling the 
wavefunctions (many frequencies) near the surface 
(dsampling space = 2, but sample is 3D) for a single 0

5

10

m
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)

b

p g p
realization of disorder.
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Representative results at f = 2.40 MHz: -15 -10 -5 0 5 10 15
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• Determine (q) 
from the slopes

-2
0
2

q
 q = 2
 q = 3lo

g from the slopes

• Subtract off the 
normal part of (q), 

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4
 log (b/Lg)

d(q-1), to determine  
q



Multifractality (MF):  the anomalous exponents (from the gIPR)
Anomalous exponents qAnomalous exponents q

0.0 Localized ultrasound

-0.5

 1
-q

Diffuse light

-1.5

-1.0

 q
,  The variation of q with 

q gives unambiguous 
evidence of MF for the 

-2 -1 0 1 2 3
-2.0

q

localized ultrasonic 
wave functions

Exact symmetry relation, predicted by Mirlin et al. (PRL 97, 046803, 2006)

 = 

q

q = 1 – q 

Consistent with our data  



Multifractality (MF):  PDF
Probability density function (PDF)Probability density function (PDF)
The gIPR are proportional to the moments of the distribution function 
of the intensities, P (IB), implying

I
I




 

    
 


( ) ln1( ) , where  

ln( / )

d f
B

B
B

IL
b L b

P

f() is called the singularity spectrum [the fractal dimension of the set of 
points r where I  (L/b) ]p ( ) ]

Significance: f() is expected to be independent of (L/b), and give a 
universal characterization of the MF behaviour. 

Relationship with (q):

( ) ( ) fq q f q
q
    

   
 

i.e., f() and (q)  are related by a Legendre transform

q 



The singularity spectrum f() – relationship with (q)

Start from: P (IB) = probability that box i has IBi between IB and IB + dIBStart from:     P (IB)  probability that box i has IBi between IB and IB  dIB

 N(IB) = (Lg/b)dP (IB) = number of boxes with IBi between IB and IB + dIB

Then, the gIPR can be written 
300
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Significance of the exponents and f( ):
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Then

   
 
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q f q

B g B gI L b I L b, N

Significance of the exponents  and f():
f() is the fractal dimension of the set 
of  points r where I  (L/b)

   ( ) ( )q q f
Then



The singularity spectrum f() – relationship with (q)

At the peak of N(IB) IB
qp N( B) B
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Hence by differentiating with respect to q we also find   ( ) ( )q q f
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f
q

Hence, by differentiating                                 with respect to q, we also find   ( ) ( )q q f
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Multifractality (MF) The parabolic approx and the PDF
Parabolic approximation:Parabolic approximation: 

(1 )q q q  
0 5

0.0

q =  q (1 - q )
with  = 0.21( = constant)

The Legendre transformation then 
yields
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The PDF in the parabolic approximation: 
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A single parameter log-normal distribution! (w2 and lnIB,c are related) 
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Multifractality (MF) PDF
The probability density function

2 2
,(ln ) exp (ln ln ) / 2B B B c w   I I IP

The probability density function
[Histogram of box-integrated intensities, IB , b  2]
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Multifractality (MF)
The singularity spectrum, f()The singularity spectrum, f()
Measure f() directly, using the method of Chhabra & Jensen 
[PRL 62, 1327 (1989)], rather than via the Legendre transform.  

Red:Red:  
Diffuse Light
• very narrow (almost a 1.5

2.0

delta function) 
• no shift in the peak from 
peak = dsampling space = 2

1.0

1 98

2.00f(
)

Blue:
Localized Ultrasound

0.0

0.5

1.94

1.96

1.98

Localized Ultrasound
(2.0-2.6 MHz, 700 speckles)
• Broad spectrum, 
indicating MF

0.5 1.0 1.5 2.0 2.5 3.0 3.5
-0.5

2.0 2.2 2.4
1.92

 indicating MF
• Max is shifted by 
peak  2 = 0.21  0.02



Question:  Is  (= 0.21)  1/g ?



Multifractality (MF)
Dependence on frequencyp q y
This can be illustrated by the reduced anomalous exponent for q = 2 ( 2)

• MF behaviour is seen 
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throughout the entire 
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independent of frequency 
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Long range correlations – see Kurt Hildebrand’s poster for more 

Spatial and frequency intensity correlations show long-range contributions

10  Scanned point source

 

Spatial and frequency intensity correlations show long range contributions.  
Compare near field spatial correlations using a point source and detector:

• When the source position is 
d th t itt d10 Single point source

 

= 
50
 m

m
)

 

scanned, the transmitted 
intensities at all detector 
positions fluctuate together, 
due to LDOS fluctuations at

1

2

C S
(f,
 
r 

 

due to LDOS fluctuations at 
the source positions.  
Measure essentially infinite-
range C0 correlations.

‐0.4

‐0.2
• The C0 correlations 
increase, while the MF 
exponent   2 decreases, 

‐0.8

‐0.6

 
2

 2 MHz transducer
 1 MHz transducer

near the bandgaps
• Consistent with recent 
suggestions that both LDOS 

d MF t
0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

Frequency (MHz)

average of 1 and 2 MHz results
  and MF exponents can 

reveal critical behaviour.  
[Murphy et al, arXiv:1011.0659v1]



• Large fluctuations in the transmitted intensity for

Statistics - Summary
Large fluctuations in the transmitted intensity for 

localized modes:
non-Rayleigh statistics
large variance var(Î)

 g < 1
15 0

5

10

15

2.35  MHz

large variance, var(Î)

• First experimental observations of wavefunction
ltif t lit th A d t iti
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multifractality near the Anderson transition:
scaling of the gIPR, 
probability density function  
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(PDF is log normal)
singularity spectrum, f() (peak > d)
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Some questions for future work:

10

15

2.425 MHz
Some questions for future work:
• Why is the peak in the singularity spectrum is shifted 
above the sampling dimension by only 0.21 at 2.4 MHz? 

What are the effects on MF of open bo ndaries
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• What are the effects on MF of open boundaries, 
absorption, mixed polarizations?
• Can determine critical exponents from MF behaviour?



Conclusions

We have used ultrasonic experiments and predictions of the self-We have used ultrasonic experiments and predictions of the self
consistent theory of dynamics of localization to demonstrate/explore 
the localization of elastic waves in a 3D disordered mesoglass.  

 Ti d d t t itt d i t it I(t) Time dependent transmitted intensity I(t) 
 non-exponential decay of I(t) at long times.  

 Transverse confinement in transmission  first 
direct measurements and theory for I(,t), showing how localization cuts off 
the transverse spreading of the multiple scattering halo.  

w 2(t) is independent of absorption and depends 
on the localization length  (and L)

 Transverse confinement and coherent backscattering
 Statistics and correlations: non-Rayleigh
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yy
y

 Statistics and correlations:  non-Rayleigh 
statistics and large variance of the transmitted 
intensity Î (g = 0.8  < 1  at 2.4 MHz); wavefunction
multifractality; long range (near-field) correlations

Transverse confinement is a powerful new approach for guiding 
investigations of 3D Anderson localization for any type of wave.  

15multifractality;   long range (near-field) correlations.



If any of you are interested in 
exploring mesoscopic waveexploring mesoscopic wave 
physics using ultrasound, 
do visit us!

Postdoctoral & graduate student 
opportunities are available for pp
both fundamental and applied 
projects!

www.physics.umanitoba.ca/~jhpage

see Physics Today, May 2007

Mesoscopic wave physics can 
even be relevant to everyday life…

see Physics Today, May 2007

Even Anderson localization?  
Anderson localization of cat…  



Anderson localization of cat…


